Home / Calculation of Ring Strain In Cycloalkanes
Conformations and Cycloalkanes
Calculation of Ring Strain In Cycloalkanes
Last updated: November 19th, 2024 |
Ring Strain In Cycloalkanes (1) – Calculation of Ring Strain
This post is all about how ring strain is calculated. If you want more specific details about ring strain in cyclopropane and cyclobutane, I suggest moving on to the next post.
In the last post we learned about one consequence of the fact that carbon can form rings – that we can form stereoisomers (cis / trans). This post attempts to explain another very interesting consequence of ring formation: ring strain.
It all starts with this: it turns out you can learn a lot about molecules by burning them. In a controlled and quantified way, of course. : – )
Table of Contents
- Heat of Combustion of Alkanes
- Heat of Combustion As A Function of Chain Length
- The Heat Of Combustion For A Very Long Chain Is About 157 kcal/mol Per CH2
- Cycloalkanes Have The General Formula (CH2)n
- Any Deviation From An Average Value of 157 kcal/mol Per CH2 Represents Ring Strain
- What Factors Might Lead To Ring Strain?
- Notes
- (Advanced) References and Further Reading
1. Heat of Combustion Of Alkanes
The molar heat of combustion, as you might recall from gen chem, is the energy released upon burning one mole of a substance. It’s a value of enthalpy [Δ H] – usually measured in kJ/mol or kcal/mol. We’re going to use kcal/mol here (See post: Why Do Organic Chemists Use Kilocalories) but to convert to kJ/mol, multiply by 4.184 and you get the same thing.
Let’s start with something simple. Imagine we had a series of straight chain alkanes. Ethane, propane, butane, all the way up to dodecane (12).
As we increase the number of carbons, the increase energy released upon combustion will increase. I like to use the analogy of an infinite staircase: with every step we go higher, we’re increasing the distance between us and the floor, and therefore increasing the energy released if we were to fall from the staircase down to the ground : – ) .
2. Heat of Combustion As A Function Of Chain Length
Let’s ask a simple question: how does the heat of combustion change as we add extra carbons?
Do you think we would we expect to see an “equal spacing” of energies as we successively add a carbon (by analogy to a staircase with equally spaced steps)? Or would the spacing gradually change? And, importantly, could we use this information to make predictions?
Let’s burn various straight chain hydrocarbons and measure how much energy (in kcal/mol) is released by each molecule.
We can then calculate the average energy released per carbon – this gives us the “spacing” between each step. This will help us predict the energy released for the next step.
[Here, use your imagination as we burn hydrocarbons of varying length and measure the heat of combustion for each case].
Let’s now look at the data. When we do this, we see the kcal/mol per carbon starts high: 213 for methane (not shown) , 186 (for ethane) and then starts reaching a limit a little bit lower than 160 kcal/mol. This is like a staircase where the steps start off large, but gradually decrease in height until they all become a uniform height.
3. The Heat Of Combustion For A Very Long Straight Chain Alkane is About 157 kcal/mol Per CH2
What’s up with the curve, by the way? Very subtle question. Answer is long, so it’s in Note 1.
- Short version: in a straight chain alkane of formula CH3(CH2)nCH3 , the heat released from burning the ends [CH3] is higher than that obtained from burning the interior CH2 groups.
- As the chain gets longer, and the #CH2 >> #CH3 the relative contribution of the 2 CH3 groups to the overall ΔH will decrease. Therefore in the limit of infinite n the value of ΔHcombustion will approach that of CH2 (about 157 kcal/mol).
4. Cycloalkanes Have The General Formula (CH2)n
So what does this have to do with cycloalkanes? Cycloalkanes are composed only of CH2 groups. There’s no “ends” to worry about. So if we repeated the same combustion experiment – starting with cyclopropane, and increasing CH2 by one each time, we might expect only to see heats of combustion that go up only by the ΔH of CH2 (157 kcal/mol).
In other words, we’d naively expect to see a staircase with uniform step height, all the way up.
Science often begins by having these naive notions about how nature should work, and then doing the experiment and finding that reality is contrary to (and thus much more interesting than) our expectations. This is a prime example!
5. Any Deviation From A Value Of 157 kcal/mol Per CH2 Tells Us About Ring Strain
Here’s what happens when we burn ‘em. Look at that “average step height” (aka ΔHcombustion/CH2).
It’s MUCH larger than we expect for C=3 (cyclopropane, 166.3 kcal/mol) and C=4 (cyclobutane, 163.9 kcal/mol), hits a minimum at C=6 (cyclohexane 157.4 kcal/mol) and then nudges up again until hitting another minimum at C=12 (cyclododecane).
(Although not included in the graph, the step height is constant from there on out, at about 157.4 kcal/mol.)
So if we take 157.4 kcal/mol as a baseline, cyclopropane releases 8.8 “extra” kcal/mol per carbon, for a total of 26.4 kcal/mol. Cyclobutane releases 6.4 “extra” kcal/mol per carbon, for a total of 25.6 kcal/mol.
This “extra” energy means these molecules are actually more unstable than we expected (“higher up the staircase” than we thought – so there’s farther to fall to the ground). We call this “extra” instability, “strain”.
Note – we’d get similar results if we compared heats of formation instead of heats of combustion, but combustion is so much more vivid : – )
6. What Factors Might Lead To Ring Strain?
Like any good experiment, this raises a whole lot of new questions.
- First, what could be a source of this “strain”? Why might cyclopropane and cyclobutane be much more unstable than we naively expected?
- Second, why is cyclohexane more unstrained than cyclopentane? For example, the interior angles of a pentagon (108°) are much closer to the ideal bond angles for a tetrahedron (109°) than a hexagon is (120°). So what gives?
- Third, what’s up with that increase in strain between C=6 (cyclohexane) and C=14 ? Why does strain go up from cyclohexane and then go back down again?
In the next post we’ll deal with cyclopropane and cyclobutane, and then future posts will go through the next two questions.
Notes
Related Articles
- Cycloalkanes – Ring Strain In Cyclopropane And Cyclobutane
- Cyclohexane Conformations
- Cyclohexane Chair Conformation Stability: Which One Is Lower Energy?
- The Cyclohexane Chair Flip – Energy Diagram
- Ranking The Bulkiness Of Substituents On Cyclohexanes: “A-Values”
- Newman Projection of Butane (and Gauche Conformation)
- Fused Rings – Cis-Decalin and Trans-Decalin
Note 1: In excess O2, all C is converted to CO2 and all H is converted to H2O.
Burning methane (CH4) gives us 1 equiv CO2 and 2 equivs of H2O. Ethane gives us 2 equivs CO2 and 3 equivs of H2O. Propane gives us 3 equivs CO2 and 4 equivs H2O. On a per-carbon basis, as we increase the # of carbons, the CO2/H2O ratio will approach 1. The ΔHcombustion on a per-carbon basis is highest for methane because proportionately more H2O is formed, so therefore proportionately more energy is released. back to top
(Advanced) References and Further Reading
- Ueber Polyacetylenverbindungen
Adolf Baeyer
Ber. 1885, 18 (2), 2269-2281
DOI: 10.1002/cber.18850180296
The original paper on ring strain by the legendary chemist Adolf von Baeyer. Even though this paper is titled on a completely different topic, ring strain is discussed at the very end of the paper. - Evaluation of strain in hydrocarbons. The strain in adamantane and its origin
Paul von R. Schleyer, James Earl Williams, and Blanchard K. R.
Journal of the American Chemical Society 1970, 92 (8), 2377-2386
DOI: 1021/ja00711a030
An early paper by Prof. P. v. R. Schleyer before he moved to Germany in the 1970’s. Adamantane was a pet topic of his, as one of his most highly-cited papers is a 1-page communication in JACS on the simple synthesis of adamantane. Table VII in this paper has a large collection of strain energies of various hydrocarbons, including cyclopropane and cyclobutane (28.13 and 26.90 kcal/mol, respectively). - Critical evaluation of molecular mechanics
Edward M. Engler, Joseph D. Andose, and Paul v. R. Schleyer
Journal of the American Chemical Society 1973, 95 (24), 8005-8025
DOI: 1021/ja00805a012
Table II in this paper contains a large table of enthalpies of formation and strain energies, both experimentally determined and theoretically calculated. - Enthalpy and kinetics of isomerization of quadricyclane to norbornadiene. Strain energy of quadricyclane
David S. Kabakoff, Jean C. G. Buenzli, Jean F. M. Oth, Willis B. Hammond, and Jerome A. Berson
Journal of the American Chemical Society 1975, 97 (6), 1510-1512
DOI: 1021/ja00839a039
This paper goes through a detailed thermochemical study of the isomerization of quadricyclane, and determines the strain energy at 96 ± 1 kcal/mol. - A survey of strained organic molecules
Joel F. Liebman and Arthur Greenberg
Chemical Reviews 1976, 76 (3), 311-365
DOI: 1021/cr60301a002 - The Concept of Strain in Organic Chemistry
Kenneth B. Wiberg
Angew. Chem. Int. Ed. 1986, 25 (4), 312-322
DOI: 10.1002/anie.198603121
Ring strain can also be called ‘angle strain’, resulting from the distortion of bond angles, increasing the energy content of the molecule. This paper also discusses the propellanes, an interesting class of small strained molecules. While [1.1.1]propellane can be isolated, [2.2.1] has not been obtained as a pure substance yet. This is due to the strength of the central bond towards homolytic cleavage, which provides a path for decomposition. This energy is strongly influenced by the difference in the strain energy between the reactant and the resulting diradical. In [1.1.1]propellane, the difference is 65 kcal/mol, while in [2.2.1]propellane, it is 5 kcal/mol. - Theoretical analysis of hydrocarbon properties. 1. Bonds, structures, charge concentrations, and charge relaxations
Kenneth B. Wiberg, Richard F. W. Bader, and Clement D. H. Lau
Journal of the American Chemical Society 1987, 109 (4), 985-1001
DOI: 1021/ja00238a004
Changes in hybridization are associated with changes in electronegativity. The greater the s character of a particular carbon orbital, the greater its electronegativity. As a result, carbon atoms that are part of strained rings are more electronegative than normal towards hydrogen. - Reactivity of Strained Compounds: Is Ground State Destabilization the Major Cause for Rate Enhancement?
Ariel Sella, Harold Basch, and Shmaryahu Hoz
Journal of the American Chemical Society 1996, 118 (2), 416-420
DOI: 1021/ja951408c
Ring strain can cause qualitative changes in the nature of the bonds (hybridization), and these changes can increase reactivity. - The Thermochemistry of Cubane 50 Years after Its Synthesis: A High-Level Theoretical Study of Cubane and Its Derivatives
Filipe Agapito, Rui C. Santos, Rui M. Borges dos Santos, and José A. Martinho Simões
The Journal of Physical Chemistry A 2015, 119 (12), 2998-3007
DOI: 10.1021/jp511756v
A reevaluation of the thermochemical properties of cubane using computational methods. The authors here reevaluate the strain energy of cubane to be 667 kJ/mol (159 kcal/mol), which is pretty close to what has been determined before (154 kcal/mol). - Heats of Combustion and of Formation of Cyclopropane
John W. Knowlton and Frederick D. Rossini
Journal of Research of the National Bureau of Standards, 1949, 43, 113-115
Link
The value for the heat of combustion of cyclopropane is given in this article as -499.85 kcal/mol (-2091 kJ/mol) for gaseous cyclopropane at 25°C. - Thermodynamic Values for Cyclobutane
See this page on the National Institutes of Science and Technology (NIST) Webbook: link
The heat of combustion for cyclobutane has been measured to be -650.2 kcal/mol (-2720.5 kJ/mol). The reference given on NIST is Coops, J.; Kaarsemaker, SJ., Heat of combustion of cyclobutane, Recl. Trav. Chim. Pays-Bas, 1950, 69, 1364.
https://onlinelibrary.wiley.com/doi/10.1002/recl.19520710307 - Thermodynamic Values for Cylopentane
NIST Webbook link here cites a value of -786.6 kcal/mol (-3291 kJ/mol) from this 1947 paper (J. Am. Chem. Soc. 1947, 69 (2), 211-213
DOI: 10.1021/ja01194a006 - Heats of combustion for cycloalkanes C10-C17: https://onlinelibrary.wiley.com/doi/10.1002/recl.19600791203
00 General Chemistry Review
01 Bonding, Structure, and Resonance
- How Do We Know Methane (CH4) Is Tetrahedral?
- Hybrid Orbitals and Hybridization
- How To Determine Hybridization: A Shortcut
- Orbital Hybridization And Bond Strengths
- Sigma bonds come in six varieties: Pi bonds come in one
- A Key Skill: How to Calculate Formal Charge
- The Four Intermolecular Forces and How They Affect Boiling Points
- 3 Trends That Affect Boiling Points
- How To Use Electronegativity To Determine Electron Density (and why NOT to trust formal charge)
- Introduction to Resonance
- How To Use Curved Arrows To Interchange Resonance Forms
- Evaluating Resonance Forms (1) - The Rule of Least Charges
- How To Find The Best Resonance Structure By Applying Electronegativity
- Evaluating Resonance Structures With Negative Charges
- Evaluating Resonance Structures With Positive Charge
- Exploring Resonance: Pi-Donation
- Exploring Resonance: Pi-acceptors
- In Summary: Evaluating Resonance Structures
- Drawing Resonance Structures: 3 Common Mistakes To Avoid
- How to apply electronegativity and resonance to understand reactivity
- Bond Hybridization Practice
- Structure and Bonding Practice Quizzes
- Resonance Structures Practice
02 Acid Base Reactions
- Introduction to Acid-Base Reactions
- Acid Base Reactions In Organic Chemistry
- The Stronger The Acid, The Weaker The Conjugate Base
- Walkthrough of Acid-Base Reactions (3) - Acidity Trends
- Five Key Factors That Influence Acidity
- Acid-Base Reactions: Introducing Ka and pKa
- How to Use a pKa Table
- The pKa Table Is Your Friend
- A Handy Rule of Thumb for Acid-Base Reactions
- Acid Base Reactions Are Fast
- pKa Values Span 60 Orders Of Magnitude
- How Protonation and Deprotonation Affect Reactivity
- Acid Base Practice Problems
03 Alkanes and Nomenclature
- Meet the (Most Important) Functional Groups
- Condensed Formulas: Deciphering What the Brackets Mean
- Hidden Hydrogens, Hidden Lone Pairs, Hidden Counterions
- Don't Be Futyl, Learn The Butyls
- Primary, Secondary, Tertiary, Quaternary In Organic Chemistry
- Branching, and Its Affect On Melting and Boiling Points
- The Many, Many Ways of Drawing Butane
- Wedge And Dash Convention For Tetrahedral Carbon
- Common Mistakes in Organic Chemistry: Pentavalent Carbon
- Table of Functional Group Priorities for Nomenclature
- Summary Sheet - Alkane Nomenclature
- Organic Chemistry IUPAC Nomenclature Demystified With A Simple Puzzle Piece Approach
- Boiling Point Quizzes
- Organic Chemistry Nomenclature Quizzes
04 Conformations and Cycloalkanes
- Staggered vs Eclipsed Conformations of Ethane
- Conformational Isomers of Propane
- Newman Projection of Butane (and Gauche Conformation)
- Introduction to Cycloalkanes
- Geometric Isomers In Small Rings: Cis And Trans Cycloalkanes
- Calculation of Ring Strain In Cycloalkanes
- Cycloalkanes - Ring Strain In Cyclopropane And Cyclobutane
- Cyclohexane Conformations
- Cyclohexane Chair Conformation: An Aerial Tour
- How To Draw The Cyclohexane Chair Conformation
- The Cyclohexane Chair Flip
- The Cyclohexane Chair Flip - Energy Diagram
- Substituted Cyclohexanes - Axial vs Equatorial
- Ranking The Bulkiness Of Substituents On Cyclohexanes: "A-Values"
- Cyclohexane Chair Conformation Stability: Which One Is Lower Energy?
- Fused Rings - Cis-Decalin and Trans-Decalin
- Naming Bicyclic Compounds - Fused, Bridged, and Spiro
- Bredt's Rule (And Summary of Cycloalkanes)
- Newman Projection Practice
- Cycloalkanes Practice Problems
05 A Primer On Organic Reactions
- The Most Important Question To Ask When Learning a New Reaction
- Learning New Reactions: How Do The Electrons Move?
- The Third Most Important Question to Ask When Learning A New Reaction
- 7 Factors that stabilize negative charge in organic chemistry
- 7 Factors That Stabilize Positive Charge in Organic Chemistry
- Nucleophiles and Electrophiles
- Curved Arrows (for reactions)
- Curved Arrows (2): Initial Tails and Final Heads
- Nucleophilicity vs. Basicity
- The Three Classes of Nucleophiles
- What Makes A Good Nucleophile?
- What makes a good leaving group?
- 3 Factors That Stabilize Carbocations
- Equilibrium and Energy Relationships
- What's a Transition State?
- Hammond's Postulate
- Learning Organic Chemistry Reactions: A Checklist (PDF)
- Introduction to Free Radical Substitution Reactions
- Introduction to Oxidative Cleavage Reactions
06 Free Radical Reactions
- Bond Dissociation Energies = Homolytic Cleavage
- Free Radical Reactions
- 3 Factors That Stabilize Free Radicals
- What Factors Destabilize Free Radicals?
- Bond Strengths And Radical Stability
- Free Radical Initiation: Why Is "Light" Or "Heat" Required?
- Initiation, Propagation, Termination
- Monochlorination Products Of Propane, Pentane, And Other Alkanes
- Selectivity In Free Radical Reactions
- Selectivity in Free Radical Reactions: Bromination vs. Chlorination
- Halogenation At Tiffany's
- Allylic Bromination
- Bonus Topic: Allylic Rearrangements
- In Summary: Free Radicals
- Synthesis (2) - Reactions of Alkanes
- Free Radicals Practice Quizzes
07 Stereochemistry and Chirality
- Types of Isomers: Constitutional Isomers, Stereoisomers, Enantiomers, and Diastereomers
- How To Draw The Enantiomer Of A Chiral Molecule
- How To Draw A Bond Rotation
- Introduction to Assigning (R) and (S): The Cahn-Ingold-Prelog Rules
- Assigning Cahn-Ingold-Prelog (CIP) Priorities (2) - The Method of Dots
- Enantiomers vs Diastereomers vs The Same? Two Methods For Solving Problems
- Assigning R/S To Newman Projections (And Converting Newman To Line Diagrams)
- How To Determine R and S Configurations On A Fischer Projection
- The Meso Trap
- Optical Rotation, Optical Activity, and Specific Rotation
- Optical Purity and Enantiomeric Excess
- What's a Racemic Mixture?
- Chiral Allenes And Chiral Axes
- Stereochemistry Practice Problems and Quizzes
08 Substitution Reactions
- Nucleophilic Substitution Reactions - Introduction
- Two Types of Nucleophilic Substitution Reactions
- The SN2 Mechanism
- Why the SN2 Reaction Is Powerful
- The SN1 Mechanism
- The Conjugate Acid Is A Better Leaving Group
- Comparing the SN1 and SN2 Reactions
- Polar Protic? Polar Aprotic? Nonpolar? All About Solvents
- Steric Hindrance is Like a Fat Goalie
- Common Blind Spot: Intramolecular Reactions
- Substitution Practice - SN1
- Substitution Practice - SN2
09 Elimination Reactions
- Elimination Reactions (1): Introduction And The Key Pattern
- Elimination Reactions (2): The Zaitsev Rule
- Elimination Reactions Are Favored By Heat
- Two Elimination Reaction Patterns
- The E1 Reaction
- The E2 Mechanism
- E1 vs E2: Comparing the E1 and E2 Reactions
- Antiperiplanar Relationships: The E2 Reaction and Cyclohexane Rings
- Bulky Bases in Elimination Reactions
- Comparing the E1 vs SN1 Reactions
- Elimination (E1) Reactions With Rearrangements
- E1cB - Elimination (Unimolecular) Conjugate Base
- Elimination (E1) Practice Problems And Solutions
- Elimination (E2) Practice Problems and Solutions
10 Rearrangements
11 SN1/SN2/E1/E2 Decision
- Identifying Where Substitution and Elimination Reactions Happen
- Deciding SN1/SN2/E1/E2 (1) - The Substrate
- Deciding SN1/SN2/E1/E2 (2) - The Nucleophile/Base
- SN1 vs E1 and SN2 vs E2 : The Temperature
- Deciding SN1/SN2/E1/E2 - The Solvent
- Wrapup: The Key Factors For Determining SN1/SN2/E1/E2
- Alkyl Halide Reaction Map And Summary
- SN1 SN2 E1 E2 Practice Problems
12 Alkene Reactions
- E and Z Notation For Alkenes (+ Cis/Trans)
- Alkene Stability
- Alkene Addition Reactions: "Regioselectivity" and "Stereoselectivity" (Syn/Anti)
- Stereoselective and Stereospecific Reactions
- Hydrohalogenation of Alkenes and Markovnikov's Rule
- Hydration of Alkenes With Aqueous Acid
- Rearrangements in Alkene Addition Reactions
- Halogenation of Alkenes and Halohydrin Formation
- Oxymercuration Demercuration of Alkenes
- Hydroboration Oxidation of Alkenes
- m-CPBA (meta-chloroperoxybenzoic acid)
- OsO4 (Osmium Tetroxide) for Dihydroxylation of Alkenes
- Palladium on Carbon (Pd/C) for Catalytic Hydrogenation of Alkenes
- Cyclopropanation of Alkenes
- A Fourth Alkene Addition Pattern - Free Radical Addition
- Alkene Reactions: Ozonolysis
- Summary: Three Key Families Of Alkene Reaction Mechanisms
- Synthesis (4) - Alkene Reaction Map, Including Alkyl Halide Reactions
- Alkene Reactions Practice Problems
13 Alkyne Reactions
- Acetylides from Alkynes, And Substitution Reactions of Acetylides
- Partial Reduction of Alkynes With Lindlar's Catalyst
- Partial Reduction of Alkynes With Na/NH3 To Obtain Trans Alkenes
- Alkyne Hydroboration With "R2BH"
- Hydration and Oxymercuration of Alkynes
- Hydrohalogenation of Alkynes
- Alkyne Halogenation: Bromination, Chlorination, and Iodination of Alkynes
- Alkyne Reactions - The "Concerted" Pathway
- Alkenes To Alkynes Via Halogenation And Elimination Reactions
- Alkynes Are A Blank Canvas
- Synthesis (5) - Reactions of Alkynes
- Alkyne Reactions Practice Problems With Answers
14 Alcohols, Epoxides and Ethers
- Alcohols - Nomenclature and Properties
- Alcohols Can Act As Acids Or Bases (And Why It Matters)
- Alcohols - Acidity and Basicity
- The Williamson Ether Synthesis
- Ethers From Alkenes, Tertiary Alkyl Halides and Alkoxymercuration
- Alcohols To Ethers via Acid Catalysis
- Cleavage Of Ethers With Acid
- Epoxides - The Outlier Of The Ether Family
- Opening of Epoxides With Acid
- Epoxide Ring Opening With Base
- Making Alkyl Halides From Alcohols
- Tosylates And Mesylates
- PBr3 and SOCl2
- Elimination Reactions of Alcohols
- Elimination of Alcohols To Alkenes With POCl3
- Alcohol Oxidation: "Strong" and "Weak" Oxidants
- Demystifying The Mechanisms of Alcohol Oxidations
- Protecting Groups For Alcohols
- Thiols And Thioethers
- Calculating the oxidation state of a carbon
- Oxidation and Reduction in Organic Chemistry
- Oxidation Ladders
- SOCl2 Mechanism For Alcohols To Alkyl Halides: SN2 versus SNi
- Alcohol Reactions Roadmap (PDF)
- Alcohol Reaction Practice Problems
- Epoxide Reaction Quizzes
- Oxidation and Reduction Practice Quizzes
15 Organometallics
- What's An Organometallic?
- Formation of Grignard and Organolithium Reagents
- Organometallics Are Strong Bases
- Reactions of Grignard Reagents
- Protecting Groups In Grignard Reactions
- Synthesis Problems Involving Grignard Reagents
- Grignard Reactions And Synthesis (2)
- Organocuprates (Gilman Reagents): How They're Made
- Gilman Reagents (Organocuprates): What They're Used For
- The Heck, Suzuki, and Olefin Metathesis Reactions (And Why They Don't Belong In Most Introductory Organic Chemistry Courses)
- Reaction Map: Reactions of Organometallics
- Grignard Practice Problems
16 Spectroscopy
- Degrees of Unsaturation (or IHD, Index of Hydrogen Deficiency)
- Conjugation And Color (+ How Bleach Works)
- Introduction To UV-Vis Spectroscopy
- UV-Vis Spectroscopy: Absorbance of Carbonyls
- UV-Vis Spectroscopy: Practice Questions
- Bond Vibrations, Infrared Spectroscopy, and the "Ball and Spring" Model
- Infrared Spectroscopy: A Quick Primer On Interpreting Spectra
- IR Spectroscopy: 4 Practice Problems
- 1H NMR: How Many Signals?
- Homotopic, Enantiotopic, Diastereotopic
- Diastereotopic Protons in 1H NMR Spectroscopy: Examples
- C13 NMR - How Many Signals
- Liquid Gold: Pheromones In Doe Urine
- Natural Product Isolation (1) - Extraction
- Natural Product Isolation (2) - Purification Techniques, An Overview
- Structure Determination Case Study: Deer Tarsal Gland Pheromone
17 Dienes and MO Theory
- What To Expect In Organic Chemistry 2
- Are these molecules conjugated?
- Conjugation And Resonance In Organic Chemistry
- Bonding And Antibonding Pi Orbitals
- Molecular Orbitals of The Allyl Cation, Allyl Radical, and Allyl Anion
- Pi Molecular Orbitals of Butadiene
- Reactions of Dienes: 1,2 and 1,4 Addition
- Thermodynamic and Kinetic Products
- More On 1,2 and 1,4 Additions To Dienes
- s-cis and s-trans
- The Diels-Alder Reaction
- Cyclic Dienes and Dienophiles in the Diels-Alder Reaction
- Stereochemistry of the Diels-Alder Reaction
- Exo vs Endo Products In The Diels Alder: How To Tell Them Apart
- HOMO and LUMO In the Diels Alder Reaction
- Why Are Endo vs Exo Products Favored in the Diels-Alder Reaction?
- Diels-Alder Reaction: Kinetic and Thermodynamic Control
- The Retro Diels-Alder Reaction
- The Intramolecular Diels Alder Reaction
- Regiochemistry In The Diels-Alder Reaction
- The Cope and Claisen Rearrangements
- Electrocyclic Reactions
- Electrocyclic Ring Opening And Closure (2) - Six (or Eight) Pi Electrons
- Diels Alder Practice Problems
- Molecular Orbital Theory Practice
18 Aromaticity
- Introduction To Aromaticity
- Rules For Aromaticity
- Huckel's Rule: What Does 4n+2 Mean?
- Aromatic, Non-Aromatic, or Antiaromatic? Some Practice Problems
- Antiaromatic Compounds and Antiaromaticity
- The Pi Molecular Orbitals of Benzene
- The Pi Molecular Orbitals of Cyclobutadiene
- Frost Circles
- Aromaticity Practice Quizzes
19 Reactions of Aromatic Molecules
- Electrophilic Aromatic Substitution: Introduction
- Activating and Deactivating Groups In Electrophilic Aromatic Substitution
- Electrophilic Aromatic Substitution - The Mechanism
- Ortho-, Para- and Meta- Directors in Electrophilic Aromatic Substitution
- Understanding Ortho, Para, and Meta Directors
- Why are halogens ortho- para- directors?
- Disubstituted Benzenes: The Strongest Electron-Donor "Wins"
- Electrophilic Aromatic Substitutions (1) - Halogenation of Benzene
- Electrophilic Aromatic Substitutions (2) - Nitration and Sulfonation
- EAS Reactions (3) - Friedel-Crafts Acylation and Friedel-Crafts Alkylation
- Intramolecular Friedel-Crafts Reactions
- Nucleophilic Aromatic Substitution (NAS)
- Nucleophilic Aromatic Substitution (2) - The Benzyne Mechanism
- Reactions on the "Benzylic" Carbon: Bromination And Oxidation
- The Wolff-Kishner, Clemmensen, And Other Carbonyl Reductions
- More Reactions on the Aromatic Sidechain: Reduction of Nitro Groups and the Baeyer Villiger
- Aromatic Synthesis (1) - "Order Of Operations"
- Synthesis of Benzene Derivatives (2) - Polarity Reversal
- Aromatic Synthesis (3) - Sulfonyl Blocking Groups
- Birch Reduction
- Synthesis (7): Reaction Map of Benzene and Related Aromatic Compounds
- Aromatic Reactions and Synthesis Practice
- Electrophilic Aromatic Substitution Practice Problems
20 Aldehydes and Ketones
- What's The Alpha Carbon In Carbonyl Compounds?
- Nucleophilic Addition To Carbonyls
- Aldehydes and Ketones: 14 Reactions With The Same Mechanism
- Sodium Borohydride (NaBH4) Reduction of Aldehydes and Ketones
- Grignard Reagents For Addition To Aldehydes and Ketones
- Wittig Reaction
- Hydrates, Hemiacetals, and Acetals
- Imines - Properties, Formation, Reactions, and Mechanisms
- All About Enamines
- Breaking Down Carbonyl Reaction Mechanisms: Reactions of Anionic Nucleophiles (Part 2)
- Aldehydes Ketones Reaction Practice
21 Carboxylic Acid Derivatives
- Nucleophilic Acyl Substitution (With Negatively Charged Nucleophiles)
- Addition-Elimination Mechanisms With Neutral Nucleophiles (Including Acid Catalysis)
- Basic Hydrolysis of Esters - Saponification
- Transesterification
- Proton Transfer
- Fischer Esterification - Carboxylic Acid to Ester Under Acidic Conditions
- Lithium Aluminum Hydride (LiAlH4) For Reduction of Carboxylic Acid Derivatives
- LiAlH[Ot-Bu]3 For The Reduction of Acid Halides To Aldehydes
- Di-isobutyl Aluminum Hydride (DIBAL) For The Partial Reduction of Esters and Nitriles
- Amide Hydrolysis
- Thionyl Chloride (SOCl2)
- Diazomethane (CH2N2)
- Carbonyl Chemistry: Learn Six Mechanisms For the Price Of One
- Making Music With Mechanisms (PADPED)
- Carboxylic Acid Derivatives Practice Questions
22 Enols and Enolates
- Keto-Enol Tautomerism
- Enolates - Formation, Stability, and Simple Reactions
- Kinetic Versus Thermodynamic Enolates
- Aldol Addition and Condensation Reactions
- Reactions of Enols - Acid-Catalyzed Aldol, Halogenation, and Mannich Reactions
- Claisen Condensation and Dieckmann Condensation
- Decarboxylation
- The Malonic Ester and Acetoacetic Ester Synthesis
- The Michael Addition Reaction and Conjugate Addition
- The Robinson Annulation
- Haloform Reaction
- The Hell–Volhard–Zelinsky Reaction
- Enols and Enolates Practice Quizzes
23 Amines
- The Amide Functional Group: Properties, Synthesis, and Nomenclature
- Basicity of Amines And pKaH
- 5 Key Basicity Trends of Amines
- The Mesomeric Effect And Aromatic Amines
- Nucleophilicity of Amines
- Alkylation of Amines (Sucks!)
- Reductive Amination
- The Gabriel Synthesis
- Some Reactions of Azides
- The Hofmann Elimination
- The Hofmann and Curtius Rearrangements
- The Cope Elimination
- Protecting Groups for Amines - Carbamates
- The Strecker Synthesis of Amino Acids
- Introduction to Peptide Synthesis
- Reactions of Diazonium Salts: Sandmeyer and Related Reactions
- Amine Practice Questions
24 Carbohydrates
- D and L Notation For Sugars
- Pyranoses and Furanoses: Ring-Chain Tautomerism In Sugars
- What is Mutarotation?
- Reducing Sugars
- The Big Damn Post Of Carbohydrate-Related Chemistry Definitions
- The Haworth Projection
- Converting a Fischer Projection To A Haworth (And Vice Versa)
- Reactions of Sugars: Glycosylation and Protection
- The Ruff Degradation and Kiliani-Fischer Synthesis
- Isoelectric Points of Amino Acids (and How To Calculate Them)
- Carbohydrates Practice
- Amino Acid Quizzes
25 Fun and Miscellaneous
- A Gallery of Some Interesting Molecules From Nature
- Screw Organic Chemistry, I'm Just Going To Write About Cats
- On Cats, Part 1: Conformations and Configurations
- On Cats, Part 2: Cat Line Diagrams
- On Cats, Part 4: Enantiocats
- On Cats, Part 6: Stereocenters
- Organic Chemistry Is Shit
- The Organic Chemistry Behind "The Pill"
- Maybe they should call them, "Formal Wins" ?
- Why Do Organic Chemists Use Kilocalories?
- The Principle of Least Effort
- Organic Chemistry GIFS - Resonance Forms
- Reproducibility In Organic Chemistry
- What Holds The Nucleus Together?
- How Reactions Are Like Music
- Organic Chemistry and the New MCAT
26 Organic Chemistry Tips and Tricks
- Common Mistakes: Formal Charges Can Mislead
- Partial Charges Give Clues About Electron Flow
- Draw The Ugly Version First
- Organic Chemistry Study Tips: Learn the Trends
- The 8 Types of Arrows In Organic Chemistry, Explained
- Top 10 Skills To Master Before An Organic Chemistry 2 Final
- Common Mistakes with Carbonyls: Carboxylic Acids... Are Acids!
- Planning Organic Synthesis With "Reaction Maps"
- Alkene Addition Pattern #1: The "Carbocation Pathway"
- Alkene Addition Pattern #2: The "Three-Membered Ring" Pathway
- Alkene Addition Pattern #3: The "Concerted" Pathway
- Number Your Carbons!
- The 4 Major Classes of Reactions in Org 1
- How (and why) electrons flow
- Grossman's Rule
- Three Exam Tips
- A 3-Step Method For Thinking Through Synthesis Problems
- Putting It Together
- Putting Diels-Alder Products in Perspective
- The Ups and Downs of Cyclohexanes
- The Most Annoying Exceptions in Org 1 (Part 1)
- The Most Annoying Exceptions in Org 1 (Part 2)
- The Marriage May Be Bad, But the Divorce Still Costs Money
- 9 Nomenclature Conventions To Know
- Nucleophile attacks Electrophile
27 Case Studies of Successful O-Chem Students
- Success Stories: How Corina Got The The "Hard" Professor - And Got An A+ Anyway
- How Helena Aced Organic Chemistry
- From a "Drop" To B+ in Org 2 – How A Hard Working Student Turned It Around
- How Serge Aced Organic Chemistry
- Success Stories: How Zach Aced Organic Chemistry 1
- Success Stories: How Kari Went From C– to B+
- How Esther Bounced Back From a "C" To Get A's In Organic Chemistry 1 And 2
- How Tyrell Got The Highest Grade In Her Organic Chemistry Course
- This Is Why Students Use Flashcards
- Success Stories: How Stu Aced Organic Chemistry
- How John Pulled Up His Organic Chemistry Exam Grades
- Success Stories: How Nathan Aced Organic Chemistry (Without It Taking Over His Life)
- How Chris Aced Org 1 and Org 2
- Interview: How Jay Got an A+ In Organic Chemistry
- How to Do Well in Organic Chemistry: One Student's Advice
- "America's Top TA" Shares His Secrets For Teaching O-Chem
- "Organic Chemistry Is Like..." - A Few Metaphors
- How To Do Well In Organic Chemistry: Advice From A Tutor
- Guest post: "I went from being afraid of tests to actually looking forward to them".
My bad ignore previous post please
“We’re going to use kcal/mol here (See post: Why Do Organic Chemists Use Kilocalories) but to convert to kJ/mol, multiply by 4.184 and you get the same thing.” Shouldn’t it be divide?
Love your content btw than you immensly.
Why does cyclohexane have negative strain?
Cyclohexane has zero strain, not negative strain.
I tried to calculate the angle strain for cyclopropane and can not get 26.4.
It’s 24.75 and not 26.4
3 times 8.8
Wonderful articles….vry easy to understand…!!!