Alkyne Reactions

By James Ashenhurst

Alkyne Halogenation: Bromination, Chlorination, and Iodination of Alkynes

Last updated: November 14th, 2022 |

Halogenation of Alkynes With Cl2, Br2, and I2

  • Like alkenes, alkynes can undergo halogenation with Cl2, Br2, or I2.
  • When 1 equivalent of the halogen is used, the products of these reactions are trans-dihaloalkenes.
  • Addition of a second equivalent of a halogen gives tetrahaloalkanes.

In this post, we’ll do the same for the “3-membered ring pathway”.

If you’ll recall from the series of posts on alkenes, alkenes react with certain electrophiles (such as halogens, among others) to give positively charged bridged intermediates. Common examples are the “bromonium ion” and the “mercurinium ion”.  These intermediates then undergo backside attack by a nucleophile, giving products with trans stereochemistry.

So… we might also expect that alkynes, being so similar to alkenes, should also react in a similar fashion. [Of course, as someone who has studied organic chemistry for awhile could tell you, what we “expect” to happen is not always what does actually happen!].

Table of Contents

  1. Reaction of Alkynes With Cl2, Br2 , and I2
  2. The Reaction Also Proceeds Through A Bridged-Ion Intermediate, Providing Trans Products
  3. Comparing the “Three-Membered Ring” Pathway For Alkenes And Alkynes
  4. Notes
  5. (Advanced) References and Further Reading

1. Halogenation of Alkynes With Cl2, Br2, and I2

Alkenes undergo halogenation with dihalides such as Cl2, Br2, and I2 . These reactions proceed through positively charged bridged intermediates such as “bromonium” and “chloronium” ions. These intermediates then undergo backside attack by a nucleophile, giving products with trans stereochemistry. (See post: Halogenation of Alkenes)

How do alkynes compare to alkenes with these reagents?

Happily for us, the reaction of alkynes with electrophiles such as Cl2, Br2, and I2 does give very similar results to what is observed with alkenes. For example, treatment of an alkyne with 1 equivalent of Cl2 provides a dichlorinated alkene with the two chlorides opposite to each other, to give us trans-dihalides

If a second equivalent of Cl2 is added, the tetrachloro derivative will form. [Note 1]

chlorination of alkynes with cl2 1 equiv gi es trans alkene 2nd equivalent gives tetrachloro dibromination diiodination of alkynes gi ves trans dihaloalkenes

So how might this reaction work? Here’s a proposal.

2. Halogenation of Alkynes Also Proceeds Through A Bridged-Ion Intermediate, Providing Trans Products

Just as with alkenes, a π bond from the alkyne can act as a nucleophile, attacking Cl2 and giving rise to a bridged intermediate (halonium ion).

In the next step, chloride ion attacks the carbon from the back face, leading to the trans product.

mechanism for halogenation of alkynes with cl2 goves through bridged intermediate attack of halide to give trans dihaloalkene

There is actually a very interesting observation to point out here, but I’ll leave that to the “Notes” section below as it is not absolutely essential for most readers’ purposes. Here’s the teaser, though: alkynes are considerably slower to react than alkenes are. [Note 2].

For our purposes, halogenation of alkynes just about covers the important reactions for the 3-membered ring pathway of alkynes.

Yes, oxymercuration of alkynes proceeds through the 3-membered ring pathway, but as discussed in this earlier post (See post: Hydroboration and Oxymercuration of Alkynes) treatment of alkynes with mercury (II) and acidic water [and acid] generally gives ketones after keto-enol tautomerism of an enol intermediate. (See post: Keto-Enol Tautomerism)

3. Comparing the “Three-Membered Ring” Pathway For Halogenation of Alkenes And Alkynes

At this point it’s worth summarizing the key similarities and differences between the 3-membered ring pathway for alkynes and alkenes.

similarities and differences between 3 membered pathway in alkene and alkyne halogens can add twice to alkynes oxymercuration gives ketone

In the next post, we’ll compare the “Concerted” pathway for alkynes and alkenes.

Next Post: Alkynes – The “Concerted” Pathway


Notes

Note 1. It’s not a problem to isolate the dichlorinated alkene here: the two electron-withdrawing chlorines make it a poorer nucleophile than the starting alkyne. This means that it’s possible to add a different electrophile to the alkene, for instance. So if you wanted to chlorinate then brominate, that would be a feasible option here (still giving the tetrahalide product).

Note 2. Why might the reaction of alkynes be slower than that for alkenes? After all, shouldn’t the alkyne be more “exposed” than the alkene, less sterically hindered? Well, the 3-membered ring intermediate formed from alkynes and halogens has two properties which make it more unstable than the corresponding 3-membered ring intermediate formed from alkenes. First of all, the additional double bond leads to considerably more ring strain; sp2 hybridized carbons [ideal angle 120°] constrained into a triangle [internal angle 60°] is more unstable than an sp3 hybridized carbon [ideal angle 109°] would be.

There’s a second point which doesn’t become apparent for most students until second-semester organic chemistry. The 3-membered ring intermediate formed has antiaromatic character. (See post: Antiaromaticity)

That is, there are 4 π electrons constrained in a conjugated ring, similar to the [never isolated] oxirene. Therefore this intermediate should be particularly high-energy and have a higher activation barrier to formation.

Note that there is some disagreement on the mechanism; it has been proposed that this reaction might proceed through nucleophilic attack on alkyne, at least for the first equivalent of Br[according to my March 5th ed. – Sinn, H. et. al., Montash Chem 196596, 1036 ]

Note 3. What about formation of halohydrins with, say, Cl2 and H2O, like we did with alkenes? Well, that reaction also works, but just as with oxymercuration, it’s complicated: we make a halogenated enol intermediate, which again goes through keto-enol tautomerization and forms a carbonyl. Because tautomerization is usually a 2nd semester topic, and most textbooks figure that it’s not worth going into this reaction in detail at this time , the topic is usually absent from the chapter on alkynes.

For the super curious, here’s a proposal:

halohydrin formation from alkyne with cl2 and h2o gives alpha halo ketones through attack of bridge with water and tautomerization

 

Next Post: Alkynes – The “Concerted” Pathway


(Advanced) References and Further Reading

  1. Untersuchungen über Alloisomerie. II
    Arthur Michael
    J. Prakt. Chem. 1892, 46 (1), 209-210
    DOI:
    10.1002/prac.18920460115
    An early paper on the bromination of alkynes. This paper mentions that bromination of dicarboxyacetylene gave 70% of the trans isomer!
  2. Vergleichende Untersuchung der Bromaddition an symmetrisch substituierte Stilben- und Tolan-Derivate
    Sinn, H., Hopperdietzel, S. & Sauermann, D.
    Monatshefte für Chemie 1965, 96, 1036–1055
    DOI:
    1007/BF00919180
    There is some disagreement on the mechanism of additions to alkynes, and this paper provides some evidence for nucleophilic attack of Br2.
  3. The Stereochemistry of Electrophilic Additions to Olefins and Acetylenes
    Robert C. Fahey
    Topics in Stereochemistry 1968, 3, 237-342
    DOI:
    1002/9780470147122.ch4
    This review is more weighted towards alkene reactions, but does contain sections on the addition of Cl2 and Br2 to acetylenes. On pg. 291, the author states, “[…] bromine additions to acetylenes […] in acetic acid follow kinetics similar to those found for olefins, but that acetylenes are 100- to 50,000-fold less reactive than the corresponding olefins”.
  4. Kinetics and mechanism of electrophilic bromination of acetylenes
    James A. Pincock, Keith Yates
    Canadian Journal of Chemistry, 1970, 48 (21): 3332-3348
    DOI:
    1139/v70-561
    Stereoselective anti addition was found in the bromination of 3-hexyne, but both cis and trans products were obtained in the brumation of phenylacetylene.
  5. Reactions of sulfenyl halides and their derivatives. 14. Effect of acetylene structure on the rates and products of addition of 4-chlorobenzenesulfenyl chloride
    George H. Schmid, Agnieszka Modro, Fred Lenz, Dennis G. Garratt, and Keith Yates
    The Journal of Organic Chemistry 1976, 41 (13), 2331-2336
    DOI: 1021/jo00875a025
    Where electrophilic addition involves bridged-ion intermediates, those arising from triple bonds are more strained than those arising from alkenes. This may be a reason why electrophilic additions by such electrophiles as Br, I, SR and so on, is slower for triple than for double bonds.
  6. Electron transmission study of the splitting of the p* molecular orbitals of angle-strained cyclic acetylenes: implications for the electrophilicity of alkynes
    Lily Ng, Kenneth D. Jordan, Adolf Krebs, and Wolfgang Rueger
    Journal of the American Chemical Society 1982, 104 (26), 7414-7416
    DOI:
    1021/ja00390a005
    Another possible explanation for the lower reactivity of alkynes relative to alkenes has to do with the availability of the unfilled orbital in the alkyne. It has been shown that a p* orbital of bent alkynes (e.g. cyclooctyne) has a lower energy than the p* orbital of alkenes, and it has been suggested that linear alkynes can achieve a bent structure in their transition states when reacting with an electrophile.

Comments

Comment section

7 thoughts on “Alkyne Halogenation: Bromination, Chlorination, and Iodination of Alkynes

  1. I have seen somewhere that you even get a cis product,through what other mechanism can you get a it

  2. “The 3-membered ring intermediate formed has antiaromatic character. That is, there are 4 π electrons constrained in a conjugated ring,” does this mean that one of the two lone pairs of Cl is part of the antiaromatic system?

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.